rank of apparition
Appearance
English
[edit]Noun
[edit]rank of apparition (plural ranks of apparition)
- (number theory) Given a positive integer m and a divisibility sequence Sk, the smallest index k such that Sk is divisible by m;
such an index for some generalisation of the concept (for example to allow multiple ranks of apparition for a given m).- Synonym: (for the Fibonacci sequence) Fibonacci entry point
- 1986, Joseph H. Silverman, The Arithmetic of Elliptic Curves, Springer, page 114:
- Let be an EDS[Elliptic Divisibility Sequence] associated to an elliptic curve and a nonzero point of finite order. Let be the smallest index such that . (The number is called the rank of apparition of the sequence.)
[…]
Suppose that is a finite field and that the rank of apparition of is at least 4.
- 1996, D. L. Wells, Residue Counts Modulo Three for the Fibonacci Triangle, G. E. Bergum, Andreas N. Philippou, Alwyn F. Horadam (editors), Applications of Fibonacci Numbers, Kluwer Academic, Softcover reprint, page 535,
- A similar identification between Pascal's Triangle modulo p and the Fibonacci Triangle modulo p can be made for primes p which have the length of the period equal to twice their rank of apparition in the Fibonacci Sequence.
- 2013, E. L. Roettger, H. C. Williams, R. K. Guy, “Some Extensions of the Lucas Functions”, in Jonathan M. Borwein, Igor Shparlinski, Wadim Zudilin, editors, Number Theory and Related Fields, Springer, page 303:
- Indeed, as shown in [18, Theorem 4.27], there exist sequences and primes for which has three ranks of apparition. In the previous section, we showed that if , then has no more than two ranks of apparition in .
Usage notes
[edit]- Typically, the integer whose rank of apparition is wanted (here called m) is specified to be a prime number (and called p). This reflects the fact that the principal issue at hand is divisibility.
Translations
[edit]smallest index k such that Fk is divisible by a specified number
|
Further reading
[edit]Fibonacci prime § Rank of apparition on Wikipedia.Wikipedia
Wall–Sun–Sun prime on Wikipedia.Wikipedia