Topologie
Appearance
See also: topologie
German
[edit]Etymology
[edit]Coined by German mathematician Johann Benedict Listing in 1847,[1] from Ancient Greek τόπος (tópos, “place, locality”) + -(o)logie (“study of, a branch of knowledge”).
Pronunciation
[edit]Audio: (file)
Noun
[edit]Topologie f (genitive Topologie, plural Topologien)
- (computing or mathematics) topology
Declension
[edit]Declension of Topologie [feminine]
singular | plural | ||||
---|---|---|---|---|---|
indef. | def. | noun | def. | noun | |
nominative | eine | die | Topologie | die | Topologien |
genitive | einer | der | Topologie | der | Topologien |
dative | einer | der | Topologie | den | Topologien |
accusative | eine | die | Topologie | die | Topologien |
References
[edit]- ^ Johann Benedict Listing (1848) Vorstudien zur Topologie [Preliminary Studies on Topology] (in German), Göttingen: Vandenhoeck & Ruprecht, page 6:
- Es mag erlaubt sein, für diese Art Untersuchungen räumlicher Gebilden den Namen ,,Topologie‘‘ zu gebrauchen statt der von Leibniz vorgeschlagenen Benennung ,,geometria situs‘‘, welche an den Begriff des Maſses, der hier ganz untergeordnet ist, erinnert, und mit dem bereits für eine andere Art geometrischer Betrachtungen gebräuchlich gewordenen Namen ,,géométrie de position‘‘ collidiert. Unter der Topologie soll also die Lehre von den modalen Verhältnissen räumlicher Gebilde verstanden werden, oder von den Gesetzen des Zusammenhangs, der gegenseitigen Lage und der Aufeinanderfolge von Punkten, Linien, Flächen, Körpern und ihren Theilen oder Aggregaten im Raume, abgesehen von der Maſs- und Gröſsenverhältnissen.
- One may be allowed to use the name “topology” for this kind of investigation of spatial structures, instead of the term “geometria situs” proposed by Leibniz, which brings to mind the concept of measure, which is quite unimportant here, and which collides with the name “géométrie de position”, which has already become customary for another type of geometrical examinations. Topology should then be understood as the science of the modal relationships of spatial structures, or of the laws of the coincidence, the mutual position, and the succession of points, lines, surfaces, solids and their parts or aggregates in space, abstracting from relationships of measure and size.