Jump to content

Module:urj-fin-verbs

From Wiktionary, the free dictionary

This module needs documentation.
Please document this module by describing its purpose and usage on the documentation page.

local m_utilities = require("Module:utilities")
local m_links = require("Module:links")
local m_common = require("Module:urj-fin-common")

local export = {}

local lang = require("Module:languages").getByCode("urj-fin-pro")

-- The main entry point.
-- This is the only function that can be invoked from a template.
function export.show(frame)
	local args = frame:getParent().args
	
	local data = {forms = {}, title = nil, categories = {}}
	
	-- Generate the forms
	inflect(args, data)
	
	-- Apply gradation
	for key, forms in pairs(data.forms) do
		for i, form in ipairs(forms) do
			forms[i] = m_common.apply_gradation(form)
		end
	end
	
	-- Check if the lemma form matches the page name
	if data.forms["inf1"] and (lang:makeEntryName(data.forms["inf1"][1])) ~= mw.title.getCurrentTitle().subpageText then
		table.insert(data.categories, lang:getCanonicalName() .. " entries with inflection not matching pagename")
	end
	
	return make_table(data) .. require("Module:TemplateStyles")("Module:urj-fin-verbs/style.css") .. m_utilities.format_categories(data.categories, lang)
end

function inflect(args, data)
	local stem = args[1]; if stem == "" then stem = nil end
	
	if not stem then
		if mw.title.getCurrentTitle().nsText == "Template" then
			stem = "-"
		else
			error("Parameter 1 (stem) must be provided")
		end
	end
	
	local overrides = {}
	if mw.ustring.find(stem, "da$") or mw.ustring.find(stem, "dä$") then
		overrides.da_stem = mw.ustring.sub(stem, -1)
		stem = mw.ustring.sub(stem, 1, -3) .. "t"
	elseif mw.ustring.find(stem, "d[eë]$") then
		stem = mw.ustring.sub(stem, 1, -3) .. "t"
	elseif mw.ustring.find(stem, "n[eë]$") and #m_common.split_syllables(stem) > 2 then
		overrides.ne_t_stem = true
	end
	
	if args["e"] or #m_common.split_syllables(stem) < 3 then
		overrides.inf_e = true
	end
	
	local stems = m_common.make_stems(stem, overrides)
	local vowels = m_common.detect_harmony(stem .. (args["v"] or ""))
	
	for _, t in ipairs(stems.types) do
		table.insert(data.categories, "Proto-Finnic verbs by type/" .. t)
	end
	
	-- Make forms
	data.forms["pres_1sg"] = {stems.normal .. "n"}
	data.forms["pres_2sg"] = {stems.normal .. "t"}
	data.forms["pres_3sg"] = {stems.normal .. "pi", stems.final}
	data.forms["pres_1pl"] = {stems.normal .. "km" .. vowels.e .. "k", stems.normal .. "km" .. vowels.a .. "k"}
	data.forms["pres_2pl"] = {stems.normal .. "kt" .. vowels.e .. "k", stems.normal .. "kt" .. vowels.a .. "k"}
	data.forms["pres_3pl"] = {stems.normal .. "p" .. vowels.a .. "t", stems.final}
	data.forms["pres_pasv"] = {stems.normal .. "ks" .. vowels.e .. "n", stems.normal .. "tt" .. vowels.a .. "ks" .. vowels.e .. "n"}
	
	data.forms["pres_conn"] = {stems.normal .. "k"}
	data.forms["pres_pasv_conn"] = {stems.normal .. "kt" .. vowels.a .. "k"}
	
	data.forms["past_1sg"] = {stems.i .. "n"}
	data.forms["past_2sg"] = {stems.i .. "t"}
	data.forms["past_3sg"] = {stems.i}
	data.forms["past_1pl"] = {stems.i .. "m" .. vowels.e .. "k", stems.i .. "m" .. vowels.a .. "k"}
	data.forms["past_2pl"] = {stems.i .. "t" .. vowels.e .. "k", stems.i .. "t" .. vowels.a .. "k"}
	data.forms["past_3pl"] = {stems.i}
	data.forms["past_pasv"] = {stems.t .. "is" .. vowels.e .. "n", stems.normal .. "ttis" .. vowels.e .. "n"}
	
	data.forms["impr_2sg"] = {stems.normal .. "k"}
	data.forms["impr_3sg"] = {stems.k .. vowels.a .. "s" .. vowels.e .. "n"}
	data.forms["impr_1pl"] = {stems.k .. vowels.a .. "t" .. vowels.e .. "m" .. vowels.e .. "k", stems.k .. vowels.a .. "t" .. vowels.a .. "m" .. vowels.a .. "k"}
	data.forms["impr_2pl"] = {stems.k .. vowels.a .. "t" .. vowels.e, stems.k .. vowels.a .. "t" .. vowels.a}
	data.forms["impr_3pl"] = {stems.k .. vowels.a .. "s" .. vowels.e .. "n"}
	data.forms["impr_pasv"] = {stems.t .. vowels.a .. "k" .. vowels.a .. "s" .. vowels.e .. "n", stems.normal .. "tt" .. vowels.a .. "k" .. vowels.a .. "s" .. vowels.e .. "n"}
	
	data.forms["impr_conn"] = {stems.k .. vowels.a .. "k"}
	data.forms["impr_pasv_conn"] = {stems.t .. vowels.a .. "k" .. vowels.a .. "k", stems.normal .. "tt" .. vowels.a .. "k" .. vowels.a .. "k"}
	
	data.forms["opta_1sg"] = {stems.k .. "on"}
	data.forms["opta_2sg"] = {stems.k .. "os"}
	data.forms["opta_3sg"] = {stems.k .. "os" .. vowels.e .. "n"}
	data.forms["opta_1pl"] = {stems.k .. "ot" .. vowels.e .. "m" .. vowels.e .. "k", stems.k .. "ot" .. vowels.a .. "m" .. vowels.a .. "k"}
	data.forms["opta_2pl"] = {stems.k .. "ott" .. vowels.e .. "k", stems.k .. "ot" .. vowels.a .. "t" .. vowels.a .. "k"}
	data.forms["opta_3pl"] = {stems.k .. "os" .. vowels.e .. "n"}
	data.forms["opta_pasv"] = {stems.t .. vowels.a .. "kos" .. vowels.e .. "n", stems.normal .. "tt" .. vowels.a .. "kos" .. vowels.e .. "n"}
	
	data.forms["opta_conn"] = {stems.k .. "ok"}
	data.forms["opta_pasv_conn"] = {stems.t .. vowels.a .. "kok", stems.normal .. "tt" .. vowels.a .. "kok"}
	
	data.forms["cond1_1sg"] = {stems.normal .. "kcin"}
	data.forms["cond1_2sg"] = {stems.normal .. "kcit"}
	data.forms["cond1_3sg"] = {stems.normal .. "kci"}
	data.forms["cond1_1pl"] = {stems.normal .. "kcim" .. vowels.e .. "k", stems.normal .. "kcim" .. vowels.a .. "k"}
	data.forms["cond1_2pl"] = {stems.normal .. "kcit" .. vowels.e .. "k", stems.normal .. "kcit" .. vowels.a .. "k"}
	data.forms["cond1_3pl"] = {stems.normal .. "kci"}
	data.forms["cond1_pasv"] = {stems.t .. vowels.a .. "kcis" .. vowels.e .. "n", stems.normal .. "tt" .. vowels.a .. "kcis" .. vowels.e .. "n"}
	
	data.forms["cond1_conn"] = {stems.normal .. "kcik"}
	data.forms["cond1_pasv_conn"] = {stems.t .. vowels.a .. "kcik", stems.normal .. "tt" .. vowels.a .. "kcik"}
	
	data.forms["cond2_1sg"] = {stems.i .. "cin"}
	data.forms["cond2_2sg"] = {stems.i .. "cit"}
	data.forms["cond2_3sg"] = {stems.i .. "ci"}
	data.forms["cond2_1pl"] = {stems.i .. "cim" .. vowels.e .. "k", stems.i .. "cim" .. vowels.a .. "k"}
	data.forms["cond2_2pl"] = {stems.i .. "cit" .. vowels.e .. "k", stems.i .. "cit" .. vowels.a .. "k"}
	data.forms["cond2_3pl"] = {stems.i .. "ci"}
	data.forms["cond2_pasv"] = {stems.t .. "icis" .. vowels.e .. "n", stems.normal .. "tticis" .. vowels.e .. "n"}
	
	data.forms["cond2_conn"] = {stems.i .. "cik"}
	data.forms["cond2_pasv_conn"] = {stems.t .. "icik", stems.normal .. "tticik"}
	
	data.forms["potn_1sg"] = {stems.n .. vowels.e .. "n"}
	data.forms["potn_2sg"] = {stems.n .. vowels.e .. "t"}
	data.forms["potn_3sg"] = {stems.n .. "i"}
	data.forms["potn_1pl"] = {stems.n .. vowels.e .. "m" .. vowels.e .. "k", stems.n .. vowels.e .. "m" .. vowels.a .. "k"}
	data.forms["potn_2pl"] = {stems.n .. vowels.e .. "t" .. vowels.e .. "k", stems.n .. vowels.e .. "t" .. vowels.a .. "k"}
	data.forms["potn_3pl"] = {stems.n .. "i"}
	data.forms["potn_pasv"] = {stems.t .. vowels.a .. "n" .. vowels.e .. "s" .. vowels.e .. "n", stems.normal .. "tt" .. vowels.a .. "n" .. vowels.e .. "s" .. vowels.e .. "n"}
	
	data.forms["potn_conn"] = {stems.n .. vowels.e .. "k"}
	data.forms["potn_pasv_conn"] = {stems.t .. vowels.a .. "n" .. vowels.e .. "k", stems.normal .. "tt" .. vowels.a .. "n" .. vowels.e .. "k"}
	
	data.forms["inf1"] = {stems.t .. vowels.a .. "k"}
	data.forms["inf2"] = {stems.t .. vowels.e .. "-"}
	data.forms["grnd"] = {stems.normal .. "m" .. vowels.a}
	data.forms["actn"] = {stems.normal .. "minen"}
	
	data.forms["pres_actv_ptc"] = {stems.normal .. "p" .. vowels.a}
	data.forms["pres_pasv_ptc"] = {stems.t .. vowels.a .. "p" .. vowels.a, stems.normal .. "tt" .. vowels.a .. "p" .. vowels.a}
	data.forms["past_actv_ptc"] = {stems.n .. vowels.u .. "t"}
	data.forms["past_pasv_ptc"] = {stems.t .. vowels.u, stems.normal .. "tt" .. vowels.u}
	
	if stems.normal == "ole" then
		data.forms["pres_3sg"] = {"omi", "on"}
		data.forms["pres_3pl"] = {"omat"}
	end
end


-- Functions for generating the inflection table

function show_form(form)
	if not form then
		return "&mdash;"
	elseif type(form) ~= "table" then
		error("a non-table value was given in the list of inflected forms.")
	end
	
	local ret = {}
	
	for key, subform in ipairs(form) do
		table.insert(ret, m_links.full_link({lang = lang, alt = "*" .. subform}))
	end
	
	return table.concat(ret, "<br/>")
end

-- Make the table
function make_table(data)
	return [=[<div class="NavFrame urj-fin-conj-frame">
<div class="NavHead urj-fin-conj-header-row">Inflection of ]=] .. m_links.full_link({lang = lang, alt = "*" .. mw.title.getCurrentTitle().subpageText}, "term") .. (data.title and " (" .. data.title .. ")" or "") .. [=[</div>
<div class="NavContent">
{| class="inflection-table urj-fin-conj"
|-
| colspan="5" | '''Note''': The Proto-Finnic conjugation system is yet to be reconstructed in detail. What is presented here is only one possibility.
|-
! class="urj-fin-conj-header-tense" |
! class="urj-fin-conj-header-tense" | present
! class="urj-fin-conj-header-tense" | past
! class="urj-fin-conj-header-tense" | imperative
! class="urj-fin-conj-header-tense" | optative
|-
! 1st&nbsp;sing.
| ]=] .. show_form(data.forms["pres_1sg"]) .. [=[

| ]=] .. show_form(data.forms["past_1sg"]) .. [=[

| ]=] .. show_form(data.forms["impr_1sg"]) .. [=[

| ]=] .. show_form(data.forms["opta_1sg"]) .. [=[

|- 
! 2nd&nbsp;sing.
| ]=] .. show_form(data.forms["pres_2sg"]) .. [=[

| ]=] .. show_form(data.forms["past_2sg"]) .. [=[

| ]=] .. show_form(data.forms["impr_2sg"]) .. [=[

| ]=] .. show_form(data.forms["opta_2sg"]) .. [=[

|-
! 3rd&nbsp;sing.
| ]=] .. show_form(data.forms["pres_3sg"]) .. [=[

| ]=] .. show_form(data.forms["past_3sg"]) .. [=[

| ]=] .. show_form(data.forms["impr_3sg"]) .. [=[

| ]=] .. show_form(data.forms["opta_3sg"]) .. [=[

|-
! 1st&nbsp;plur.
| ]=] .. show_form(data.forms["pres_1pl"]) .. [=[

| ]=] .. show_form(data.forms["past_1pl"]) .. [=[

| ]=] .. show_form(data.forms["impr_1pl"]) .. [=[

| ]=] .. show_form(data.forms["opta_1pl"]) .. [=[

|-
! 2nd&nbsp;plur.
| ]=] .. show_form(data.forms["pres_2pl"]) .. [=[

| ]=] .. show_form(data.forms["past_2pl"]) .. [=[

| ]=] .. show_form(data.forms["impr_2pl"]) .. [=[

| ]=] .. show_form(data.forms["opta_2pl"]) .. [=[

|-
! 3rd&nbsp;plur.
| ]=] .. show_form(data.forms["pres_3pl"]) .. [=[

| ]=] .. show_form(data.forms["past_3pl"]) .. [=[

| ]=] .. show_form(data.forms["impr_3pl"]) .. [=[

| ]=] .. show_form(data.forms["opta_3pl"]) .. [=[

|-
! passive
| ]=] .. show_form(data.forms["pres_pasv"]) .. [=[

| ]=] .. show_form(data.forms["past_pasv"]) .. [=[

| ]=] .. show_form(data.forms["impr_pasv"]) .. [=[

| ]=] .. show_form(data.forms["opta_pasv"]) .. [=[

|-
! connegative
| ]=] .. show_form(data.forms["pres_conn"]) .. [=[

| ]=] .. show_form(data.forms["past_conn"]) .. [=[

| ]=] .. show_form(data.forms["impr_conn"]) .. [=[

| ]=] .. show_form(data.forms["opta_conn"]) .. [=[

|-
! passive&nbsp;connegative
| ]=] .. show_form(data.forms["pres_pasv_conn"]) .. [=[

| ]=] .. show_form(data.forms["past_pasv_conn"]) .. [=[

| ]=] .. show_form(data.forms["impr_pasv_conn"]) .. [=[

| ]=] .. show_form(data.forms["opta_pasv_conn"]) .. [=[

|-
!
! conditional&nbsp;1
! conditional&nbsp;2
! potential
! rowspan="10" |
|-
! 1st&nbsp;sing.
| ]=] .. show_form(data.forms["cond1_1sg"]) .. [=[

| ]=] .. show_form(data.forms["cond2_1sg"]) .. [=[

| ]=] .. show_form(data.forms["potn_1sg"]) .. [=[

|- 
! 2nd&nbsp;sing.
| ]=] .. show_form(data.forms["cond1_2sg"]) .. [=[

| ]=] .. show_form(data.forms["cond2_2sg"]) .. [=[

| ]=] .. show_form(data.forms["potn_2sg"]) .. [=[

|-
! 3rd&nbsp;sing.
| ]=] .. show_form(data.forms["cond1_3sg"]) .. [=[

| ]=] .. show_form(data.forms["cond2_3sg"]) .. [=[

| ]=] .. show_form(data.forms["potn_3sg"]) .. [=[

|-
! 1st&nbsp;plur.
| ]=] .. show_form(data.forms["cond1_1pl"]) .. [=[

| ]=] .. show_form(data.forms["cond2_1pl"]) .. [=[

| ]=] .. show_form(data.forms["potn_1pl"]) .. [=[

|-
! 2nd&nbsp;plur.
| ]=] .. show_form(data.forms["cond1_2pl"]) .. [=[

| ]=] .. show_form(data.forms["cond2_2pl"]) .. [=[

| ]=] .. show_form(data.forms["potn_2pl"]) .. [=[

|-
! 3rd&nbsp;plur.
| ]=] .. show_form(data.forms["cond1_3pl"]) .. [=[

| ]=] .. show_form(data.forms["cond2_3pl"]) .. [=[

| ]=] .. show_form(data.forms["potn_3pl"]) .. [=[

|-
! passive
| ]=] .. show_form(data.forms["cond1_pasv"]) .. [=[

| ]=] .. show_form(data.forms["cond2_pasv"]) .. [=[

| ]=] .. show_form(data.forms["potn_pasv"]) .. [=[

|-
! connegative
| ]=] .. show_form(data.forms["cond1_conn"]) .. [=[

| ]=] .. show_form(data.forms["cond2_conn"]) .. [=[

| ]=] .. show_form(data.forms["potn_conn"]) .. [=[

|-
! passive&nbsp;connegative
| ]=] .. show_form(data.forms["cond1_pasv_conn"]) .. [=[

| ]=] .. show_form(data.forms["cond2_pasv_conn"]) .. [=[

| ]=] .. show_form(data.forms["potn_pasv_conn"]) .. [=[

|-
! rowspan="2" | non-finite forms
! rowspan="2" | infinitives/nouns
! rowspan="2" |
! colspan="2" | participles
|-
! class="thsub" | active
! class="thsub" | passive
|-
|-
! infinitive 1
| ]=] .. show_form(data.forms["inf1"]) .. [=[

! present
| ]=] .. show_form(data.forms["pres_actv_ptc"]) .. [=[

| ]=] .. show_form(data.forms["pres_pasv_ptc"]) .. [=[

|-
! infinitive 2
| ]=] .. show_form(data.forms["inf2"]) .. [=[

! past
| ]=] .. show_form(data.forms["past_actv_ptc"]) .. [=[

| ]=] .. show_form(data.forms["past_pasv_ptc"]) .. [=[

|-
! gerund/supine
| ]=] .. show_form(data.forms["grnd"]) .. [=[

! rowspan="2" colspan="3" |
|-
! action&nbsp;noun
| ]=] .. show_form(data.forms["actn"]) .. [=[

|}
</div>
</div>]=]

end

return export