Curry-Howard correspondence
Appearance
(Redirected from Curry–Howard correspondence)
English
[edit]Proper noun
[edit]- A thesis which claims the existence of an analogy or correspondence between — on the one hand — constructive mathematical proofs and programs (especially functions of a typed functional programming language), and — on the other hand — between formulae (proven by the aforementioned proofs) and types (of the aforementioned functions).
- Gerhard Gentzen's calculus of natural deduction is the first formalism of structural proof theory, and is the cornerstone of the Curry-Howard correspondence relating logic to functional programming.WP